Adenosine uptake sites in brain: regional distribution of putative subtypes in relationship to adenosine A1-receptors.

نویسندگان

  • J Deckert
  • J C Bisserbe
  • E Klein
  • P J Marangos
چکیده

Adenosine uptake sites have been characterized and localized in guinea pig and pointer dog brain by in vitro autoradiography, using as probes 3H-nitrobenzylthioinosine (3H-NBI) and the recently available 3H-dipyridamole (3H-DPR). In guinea pig brain and, to a lesser extent, in pointer dog brain, 3H-DPR was found to label more high-affinity binding sites than 3H-NBI and NBI inhibited 3H-DPR binding having pseudo-Hill coefficients smaller than 0.5. 3H-DPR and 3H-NBI labeled brain structures with different intensities in guinea pig brain, as was revealed by quantitative analysis. While the intensity of 3H-DPR binding varied about 4-fold in neuron-containing structures, 8-fold differences were observed for 3H-NBI binding with phylo- and ontogenetically older brain areas such as hypothalamus and various brain stem structures showing relatively higher densities. These findings raise the interesting possibility of adenosine uptake site heterogeneity (NBI-sensitive and insensitive) in guinea pig brain, complementing the well-established adenosine receptor heterogeneity (A1 and A2). As adenosine's neurodepressant effects are believed to be mainly mediated by adenosine A1-receptors, these were localized using 3H-cyclohexyl-adenosine (3H-CHA) as a ligand probe. In guinea pig brain, the highest receptor densities were seen in hippocampus and claustrum, while only relatively low levels were found in hypothalamus and various brain stem structures. As was previously described for rat brain, major discrepancies in the regional distribution of adenosine A1-receptors and adenosine uptake sites, as labeled by 3H-NBI, were seen in guinea pig brain. These discrepancies were only partly abolished (e.g., in cerebellum) by the use of 3H-DPR as an additional ligand probe for adenosine uptake sites. Adenosine uptake site heterogeneity, therefore, probably does not explain the previously described discrepancies in rodent brain between the distribution of adenosine A1-receptors and uptake sites. Because of the low affinity of 3H-DPR for adenosine uptake sites in rat and mouse brain, these species could not be investigated with this new radioligand probe. In pointer dog brain, as compared to guinea pig brain, a more similar distribution pattern of adenosine A1-receptors and adenosine uptake sites in the brain structures investigated (e.g., hippocampus) could be observed. The situation in guinea pig brain can, therefore, not be universalized to other species.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی و مقایسه اثرات ضد تشنجی گیرندهای آدنوزینی A1 در ناحیه CA1 هیپوکمپ بر شدت تشنجهای ایجاد شده به روش کیندلینگ الکتریکی آمیگدال و قشر انتورینال موش صحرایی

Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppre...

متن کامل

ANTINOCICEPTIVE INTERACTION BETWEEN ADENOSINE AND CARBAMAZEPINE IN MICE

There are several reports that adenosine and carbamazepine have pharmacodynamic interaction. I n this study the antinociceptive interaction o f these two agents was evaluated in mice by the hot plate test. Agents were injected intraperitoneally. 0.2 and 0.4 mg/kg doses of R-phenylisopropyladenosine (R-PIA) substantially showed antinociceptive effects. Carbamazepine had antinociceptive acti...

متن کامل

The role of adenosine A1 receptors on post seizure depression period in rats

Epilepsy is among the most common disorders of the central nervous system and there is not an absolute method for its treatment. It has been shown that each seizure has a depressing effect on the following seizure. Thus, finding the mechanisms responsible in this phenomenon can improve our knowledge toward new ways for epilepsy treatment. In this study, the role of adenosine A1 receptors in ...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

Low-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats

Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 1988